向量空间是线性代数的中心内容和基本概念之一。
向量空间是一些向量的集合,集合中元素(向量)满足两个条件:
1、任意两个元素的和仍在此集合中。
2、任意元素乘以任意实数仍在此集合中。
满足以上两个条件的向量集合叫向量空间。
向量空间的概念是:设V为n维向量的集合,如果集合V非空,且集合V对于加法及乘数两种运算封闭,那么就称集合V为向量空间。其理论和方法已应用到自然科学、工程技术及社会科学的诸多领域。
向量空间相关图书向量空间的一个直观模型是向量几何,几何上的向量及相关的运算即向量加法,标量乘法,以及对运算的一些限制如封闭性,结合律,已大致地描述了“向量空间”这个数学概念的直观形象。
在现代数学中,“向量”的概念不仅限于此,符合下列公理的任何数学对象都可被当作向量处理。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。