二阶齐次线性微分方程(二阶齐次线性微分方程的通解)

教育百科2022-05-21 18:02:22未知

二阶齐次线性微分方程(二阶齐次线性微分方程的通解)

  二阶常系数线性微分方程:如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。

二阶齐次线性微分方程

  二阶线性微分方程是指未知函数及其一阶、二阶导数都是一次方的二阶方程,简单称为二阶线性方程。

  标准形式y″+py′+qy=0

  特征方程r^2+pr+q=0

二阶齐次线性微分方程

  通解

  1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

  2、两根相等的实根:y=(C1+C2x)e^(r1x)

  3、共轭复根r=α+iβ:y=e^(αx)*(C1cosβx+C2sinβx)

  标准形式y''+p(x)y'+q(x)y=f(x)

二阶齐次线性微分方程

  简介

  二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,二是线性非齐次微分方程。前者主要是采用特征方程求解,后者在对应的齐次方程的通解上加上特解即为非齐次方程的通解。齐次和非齐次的微分方程的通解都包含一切的解。

本文标签: 微分方程  线性  二阶齐次  

相关推荐

猜你喜欢

大家正在看